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CALCULATION OF FAMILIES OF STATIONARY

FILTRATION CONVECTION REGIMES IN A NARROW CONTAINER

UDC 517.9O. Yu. Kantur and V. G. Tsybulin

A plane Darcy filtration convection problem for rectangular containers elongated in the vertical di-
rection is considered. By the spectral-difference method, which preserved cosymmetry of the initial
problem, evolution of families of stationary regimes from the onset of instability on the primary fam-
ily till the collision of the families is studied.

Key words: filtration convection, cosymmetry, families of stationary solutions, spectral-difference
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Introduction. Previous studies of incompressible-liquid convection in a porous medium (Darcy model) re-
vealed simultaneous existence of an infinite number of stationary regimes [1]. This phenomenon was explained based
on the cosymmetry theory [2, 3] and studied in natural [4, 5] and numerical experiments [6–11]. A continuous family
of stationary convection regimes differing in their spectral characteristics arises after the mechanical-equilibrium
state loses stability. With increasing heating intensity, some equilibria on the family become unstable. It fol-
lows from calculations based on the Galerkin method [6, 7] that, depending on geometric characteristics, such a
transition can result both from monotonic and oscillatory instability. This implies appearance of either a positive
real eigenvalue or a pair of complex numbers with positive real parts in the equilibrium spectrum. In addition,
the calculations [7–9] revealed collisions of families of stationary regimes and appearance of periodic and random
motions.

In the present work, using the spectral-difference method [11], we study the evolution of families of station-
ary convective regimes for rectangular containers whose height is larger than their width. The calculations were
performed for disretizations yielding systems of ordinary differential equations with the number of variables ranging
from several hundreds to a thousand. The emergence of instability on the primary family, the loss of stability of all
equilibrium states of the family, and the collisions of families are analyzed.

Statement of the Problem. In the plane statement, we consider the problem about heating from below
of a rectangular container filled with a porous medium saturated with a liquid. For a liquid obeying the Darcy law,
the equations in dimensionless variables have the form

θt = ∆θ + λψx + J(θ, ψ); (1)

∆ψ − θx = 0. (2)

Here θ is the deviation of temperature from the value corresponding to the equilibrium state, ψ is the stream
function, J(θ, ψ) = θxψy − θyψx is the Jacobian, t is the time, and x and y are the plane Cartesian coordinates.
The filtration Rayleigh number is defined by the formula λ = αgAkl/(χν), where α is the volume expansion, g is
the free-fall acceleration, A is the typical temperature difference, k is the permeability, l is the characteristic length,
χ is the thermal diffusivity, and ν is the kinematic viscosity. At the boundary of the region Ω = [0, a] × [0, b], the
following first-kind boundary conditions are posed:

θ = 0, ψ = 0. (3)
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The initial condition for system (1), (2) has the form

θ(x, y, 0) = θ0(x, y), (4)

where θ0(x, y) is a function defined in Ω. No initial condition for ψ is posed, since the stream function can be
found from temperature by solving the boundary-value problem (2), (3). System (1)–(3) is globally solvable and
dissipative, and the cosymmetry depends on the stream function ψ [2, 3]. Note that Eqs. (1) and (2) are invariant
with respect to the transformations

Rx: {x, y, θ, ψ} 7→ {a− x, y, θ,−ψ}; (5)

Ry: {x, y, θ, ψ} 7→ {x, b− y,−θ,−ψ}. (6)

The zero equilibrium θ = ψ = 0 for system (1)–(4) exists for all values of the parameter λ, and the eigenvalues
of the corresponding spectral problem are given by the formula λnm = 4π2(n2/a2 + m2/b2), where m and n are
integer numbers. Yudovich showed [3] the first critical value λ11 to be twofold for an arbitrary region and, as the
parameter λ passes through λ11, a family of stationary regimes with a variable spectrum (primary family) branches
off from the state of rest. Further, each transition of λ through the next critical value λnm (n + m > 2) leads to
branching-off of a new family of unsteady stationary regimes from zero equilibrium.

Solution Method. To solve the problem, we use the spectral-difference method based on Galerkin expan-
sions in the coordinate y and difference approximations along the coordinate x [11]. The solution is sought in the
form

{θ, ψ} =
m∑
j=1

{θj(x, t), ψj(x, t)} sin
πjy

b
. (7)

After insertion of (7) into Eqs. (1) and (2) and projecting, we obtain the system

θ̇j = θ′′j − cjθj + λψ′j − Jj , Jj =
2π
b

(m−j∑
i=1

χ1
j,i +

j−1∑
i=1

χ2
j,i

)
,

ψ′′j − cjψj − θ′j = 0, j = 1, . . . ,m.
(8)

Here and below, the prime denotes differentiation with respect to x and the dot denotes differentiation with respect
to t; cj = j2π2/b2, and the quantities χ1

j,i and χ2
j,i can be represented as

χ1
j,i = ((2i+ j)/2)(Ds(θi+j , ψi)−Ds(θi, ψi+j))− (j/2)(Da(θi+j , ψi) +Da(θi, ψi+j)),

χ2
j,i = ((j − i)/2)(Ds(θi, ψj−i) +Da(θi+j , ψi)−Ds(θj−i, ψi) +Da(θj−i, ψi)),

where Da and Ds are differential operators:

Da(θ, ψ) = θ′ψ − θψ′, Ds(θ, ψ) = θ′ψ + θψ′. (9)

The boundary conditions for problem (8) are written as

θj(t, 0) = θj(t, a) = 0, ψj(t, 0) = ψj(t, a) = 0, j = 1, . . . ,m. (10)

To approximate Eqs. (8) along the variable x, we use the finite-difference method of second-order accuracy.
In the segment [0, a], we introduce the grid ω = {xk: xk = kh, k = 0, . . . , n, and h = a/(n+ 1)}. Here and below,
we use the designations θj,k = θj(xk, t), ψj,k = ψj(xk, t), and Jj,k = Jj(xk, t).

The first and second derivatives of the linear part of Eqs. (8) are approximated with central-difference
relations. As a result, we obtain the following system of ordinary differential equations:

θ̇j,k =
θj,k+1 − 2θj,k + θj,k−1

h2
− cjθj,k + λ

ψj,k+1 − ψj,k−1

2h
− Jj,k,

(11)
ψj,k+1 − 2ψj,k + ψj,k−1

h2
− cjψj,k −

θj,k+1 − θj,k−1

2h
= 0.

From the boundary conditions (10), we find the grid functions on the boundaries:

θj,0 = θj,n = 0, ψj,0 = ψj,n = 0. (12)
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Fig. 1. Critical values versus on the container height: emergence of monotonic instability on the
family (1), emergence of oscillatory instability (2), instability of the family as a whole (3), and
collision of the primary family with the secondary-family branch (4).

Approximations of the operators Da and Ds [see (9)] preserving the cosymmetry for problem (11), (12) were
constructed in [11]:

da,k(θ, ψ) =
θk+1 − θk−1

2h
ψk − θk

ψk+1 − ψk−1

2h
,

ds,k(θ, ψ) =
2θk+1ψk+1 + ψk(θk+1 − θk−1) + θk(ψk+1 − ψk−1)− 2θk−1ψk−1

6h
.

The initial condition (4) yields the initial temperatures

θj,k =
∫
D

θ0(xk, y) sin
πjy

b
, j = 1, . . . ,m, k = 0, . . . , n.

The resultant system of ordinary differential equations was integrated by the Runge–Kutta method. As was
found in [3], for λ only insignificantly exceeding λ11, all equilibria on the family are stable. Thus, starting from a
vicinity of unstable zero equilibrium and integrating the corresponding system of ordinary differential equations until
the solution attains its steady-state form, one can obtain some stable equilibrium state of the family. Afterwards,
the family can be calculated using the algorithm [6, 8, 10]; in this algorithm, the linearization matrix is obtained
numerically, and its kernel is found by the SVD-expansion method. To refine the solution for the equilibrium state
in the vicinity of the family, the Newton method can be used, and the value at a next point on the family can be
calculated by the Adams extrapolation method.

Calculation of Families of Stationary Regimes. Below, we present calculation results for families of
stationary convection regimes in narrow containers of relative height β = b/a > 1. The width of the containers was
fixed: a = 1, and the height b was a varied parameter. The study was performed for filtration Rayleigh numbers
from the moment of emergence of the primary stable family to the moment of the collision of the families.

The state of rest θ = ψ = 0 is globally stable if temperature gradients are small (the Rayleigh parameter is
λ < λ11); as we pass through a critical value, there arises a continuous family of stationary convection regimes that
inherits the zero-equilibrium stability [2, 3]. The spectrum of each equilibrium contains a zero value corresponding
to the neutral direction along the family; stability or instability of the equilibrium of the family can be established
from a stability analysis performed on the manifold transverse to the family.

At small supercriticalities, i.e., at parameters λ slightly higher than the critical value λ11, the primary family
is perfectly stable. As the parameter increases, the family first grows, and at λ = λu new equilibria (stationary
convection regimes) with a neutral spectrum on the transverse manifold emerge on it. The total number of such
regimes depends on the particular container geometry. Then, these equilibria lose stability (the second transition),
and arcs of unstable regimes appear on the family.

If λ12 < λu, then a second family that consists of unstable regimes and belongs to the invariant subspace —
consequence of the discrete symmetry of Ry [see (6)] — branches off. With increasing Rayleigh number, as a result
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Fig. 2. Stream functions of stationary regimes that lose stability first for various relative container
heights: β = 1.5 (a), 2 (b), and 2.5 (c).

of internal bifurcation, on this family there arises a branch that does not lie on the invariant subspace [8]; as λ
further grows, this branch collides with the primary family. As a result, reconnection of the branches occurs, and
new closed curves of families of stationary regimes emerge in the phase space.

Depending on the container height, two scenarios are possible. If 2.1 < β < 4.4, then the primary family
first becomes absolutely unstable (λ = λo), and then it collides with the second family (λ = λc). In containers
with 1.0 < β 6 2.1 and β > 4.4, a collision of the primary family, which consists of stable and unstable stationary
regimes, with the second, absolutely unstable family is observed. In all cases, the calculations yield three closed
curves formed by equilibria: two additional (small) families and a family formed by merging of almost all parts of
the primary families. For almost square containers, these additional families initially consist of stable and unstable
regimes. It should be noted that, for β < 1.34, these families survive as the Rayleigh parameter increases, and the
additional families for higher containers shrink into points and vanish.

The calculated critical values λu, λc, and λo for various β are shown in Fig. 1 (the values of λ are normalized
by the critical value of the first transition λ11). Curves 1 and 2 correspond to the emergence of monotonic and
oscillatory instability on the family, curve 3 to the loss of stability of the primary family as a whole (λ = λo), and
curve 4 to the critical values of the collision between the primary and secondary families (λ = λc). These data were
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Fig. 3. Families of stationary regimes (β = 2) prior to the collision (a–c) (1 is a primary family and 2 is
a secondary family) and after the collision (d) (1 is a merged family and 2 and 3 are small families).

obtained for the discretization with n×m = 16× 16; to check the solutions, computations with n×m = 24× 16,
24× 24, and 30× 30 were also performed.

Emergence of Instability on the Family. In [6, 7], for Galerkin models, an oscillatory instability for a
narrow container with b/a = 2.5 was established. It follows from the results of the present study that, in the case
of narrow containers with β < 2.3, the emergence of unstable arcs on the family of stationary regimes results from
monotonic instability. With varying β, a continuous transition from monotonic instability to oscillatory instability
is observed, and there is a value of β that corresponds to loss of stability at six points of the family: four points
exhibit oscillatory instability and two points, monotonic instability. For the discretization with n ×m = 16 × 16,
the emergence of instability at six points was obtained for β ≈ 2.3; for finer discretizations, the corresponding value
of β insignificantly increases.

Instability on the family arises simultaneously at an even number of points since the stationary problem
(1), (2) is invariant with respect to discrete symmetries (5) and (6). Figure 2 shows the stream functions of regimes
that lose stability first for several values of β. In particular, monotonic instability is observed at four points for
containers with 1.0 < β < 1.8 and at two points if 1.8 6 β < 2.3. Note that monotonic instability at two points
corresponds to regimes with the minimum or maximum heat flux through the vertical midsection. The second
transition resulting from oscillatory instability can occur at two (3.9 6 β < 4.8) or four points (2.3 6 β < 3.9,
β > 4.8). For β < 3.3, the equilibria on the family become unstable owing to monotonic or oscillatory instability,
and for β > 3.3, only oscillatory instability causes them.

Evolution Scenarios of Families. In Fig. 3, the families of stationary regimes are shown in the coordinates
Nuh and Nuv [6]:

Nuh =

b∫
0

∂θ

∂x

∣∣∣
x=a/2

dy, Nuv =

a∫
0

∂θ

∂y

∣∣∣
y=0

dx

[the asterisks (or circles) show the regimes that correspond to emergence of monotonic (or oscillatory) instability].
The primary family of equilibria for a container with β = 2 branches off at λ = 50.6, and the secondary

family, at λ = 81.6. With increasing λ, the primary family undergoes deformation, and at λ = λu = 112 (see
Fig. 3a) two points corresponding to monotonic instability appear on this family. Then, two arcs that correspond to
unstable equilibria appear on the family, and four regimes that lost their stability in an oscillatory manner emerge
at λ = 129 (Fig. 3b). The position of two families prior to the collision is shown in Fig. 3c, the major part of the
primary family being already unstable (stable are only small arcs corresponding to the maximum and minimum
values of Nuv). The collision occurs at λc ≈ 147.6 and results in two small families and a united family formed
by almost all parts of the primary families merged together (see Fig. 3d). Here, saddle bifurcation in terms of the
classification of [2, 12, 13] is observed. It should be noted that the secondary-family branch that belongs to the
invariant subspace (the segment in the line Nuv = 0) is not shown in Fig. 3.
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Fig. 4. Approachment (a–c) and subsequent collision (d) of families (β = 2): 1) primary family,
2) secondary family; the small family departed during the collision is shown by the dashed curve.

Figure 4 depicts the approachment and subsequent collision of the primary and secondary families (curves 1
and 2, respectively). The curves in Fig. 4 are projections onto the manifold formed by zero-equilibrium eigenvectors
that correspond to two eigennumbers with the maximum real part. At λ = 156, the united family becomes absolutely
unstable and, as the parameter λ further increases, the small families shrink and vanish, which corresponds to origin
bifurcation of the equilibrium cycle “from nowhere” described in [2, 12, 13].

Figure 5 shows the evolution of the families for β = 2.5. The primary family of equilibria branches off at
λ = 46.9, and at λ = λu = 106 the family displays oscillatory instability at four points (see Fig. 5a), from which
four unstable-equilibrium arcs emerge as the value of λ further increases. With increasing λ, arcs consisting of the
equilibria that lost their stability monotonically appear (Fig. 5b). At λo = 122, the family becomes absolutely
unstable, and the trajectories emitted from the vicinity of the family are attracted to the stable limiting cycle that
exists at λ > 119. Figure 5c shows the families prior to the collision, and Fig. 5d shows the result of the collision,
namely, the formation of the united family (curve 1) and two small families (curves 2 and 3).
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Fig. 5. Families of stationary regimes (β = 2.5) (notation the same as in Fig. 3).

Calculations with β > 2.3 reveal simultaneous existence of stable stationary motions on the family and stable
periodic autooscillatory regimes; for β < 2.3, complex stochastic regimes are found. For instance, after the family
of equilibria for a container with β = 2 becomes absolutely unstable, a chaotic regime emerges (λ = 156). As λ
becomes greater than λ = 164, the chaotic regime transforms into the limiting cycle; as the parameter λ decreases,
this chaotic regime breaks down, and establishment of two stable regimes on the equilibrium family is observed.

The range of filtration Rayleigh numbers in which stable equilibria on the family and stable limiting cycles
can exist simultaneously widens with increasing β above β > 2.3.

Conclusions. The present study of families of stationary regimes in the filtration convection problem with
the Darcy law of friction has allowed us to trace the evolution of primary and secondary families branching off from
the zero equilibrium up to their collision for rectangular containers with various height-to-width ratios. Critical
values of the filtration Rayleigh number are found at which instability emerges on the primary family, i.e., the second
transition occurs. It is shown how the character of instability (oscillatory or monotonic) and the total number of
stationary motions losing their stability depend on the container height.

The collision of families of stationary regimes is considered. It is shown that the reconnection of branches of
colliding families gives rise to new families, which consist of both stable and unstable stationary regimes. Further
studies are required to establish which of these regimes can be observed experimentally. (Some approaches to this
problem and analytical and numerical results for the finite-dimensional Darcy problem can be found in [14].)
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